Search results for "Point distribution model"
showing 5 items of 5 documents
Morphology of the galaxy distribution from wavelet denoising
2005
We have developed a method based on wavelets to obtain the true underlying smooth density from a point distribution. The goal has been to reconstruct the density field in an optimal way ensuring that the morphology of the reconstructed field reflects the true underlying morphology of the point field which, as the galaxy distribution, has a genuinely multiscale structure, with near-singular behavior on sheets, filaments and hotspots. If the discrete distributions are smoothed using Gaussian filters, the morphological properties tend to be closer to those expected for a Gaussian field. The use of wavelet denoising provide us with a unique and more accurate morphological description.
Spectral clustering of shape and probability prior models for automatic prostate segmentation.
2013
Imaging artifacts in Transrectal Ultrasound (TRUS) images and inter-patient variations in prostate shape and size challenge computer-aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose to use multiple mean parametric models derived from principal component analysis (PCA) of shape and posterior probability information to segment the prostate. In contrast to traditional statistical models of shape and intensity priors, we use posterior probability of the prostate region determined from random forest classification to build, initialize and propagate our model. Multiple mean models derived from spectral clustering of combined shape and appearance parameters…
A Supervised Learning Framework for Automatic Prostate Segmentation in Trans Rectal Ultrasound Images
2012
International audience; Heterogeneous intensity distribution inside the prostate gland, significant variations in prostate shape, size, inter dataset contrast variations, and imaging artifacts like shadow regions and speckle in Trans Rectal Ultrasound (TRUS) images challenge computer aided automatic or semi-automatic segmentation of the prostate. In this paper, we propose a supervised learning schema based on random forest for automatic initialization and propagation of statistical shape and appearance model. Parametric representation of the statistical model of shape and appearance is derived from principal component analysis (PCA) of the probability distribution inside the prostate and PC…
Sensitivity analysis of mesh warping and subsampling strategies for generating large scale electrophysiological simulation data
2011
The analysis of large-scale simulation data from virtual populations can be effective to gain computational insight into disease mechanisms and treatment strategies, which can serve for generating hypotheses for and focusing subsequent clinical trials. This can be instrumental in shortening the critical path in medical product development and more cost-effective clinical trials. A previously published pipeline established point correspondence among volumetric meshes to enable meaningful statistics on cardiac electrophysiological simulations on the anatomical distribution of a large-scale virtual population. Thin Plate Splines (TPS), derived from surface deformations, were used to warp a tem…
Automatic landmark detection and 3D Face data extraction
2017
Abstract This paper contributes to 3D facial synthesis by presenting a novel method for parameterization using Landmark Point detection. The approach presented aims at improving facial recognition even in varying facial expressions, and missing data in 3D facial models. As such, the prime objective was to develop an automatically embedded process that can detect any frontal face in 3D face recognition systems, with face segmentation and surface curvature information. Using the hybrid interpolation method, experiments on facial landmarks were performed on 4950 images from Face Recognition Grand Challenge database (FRGC). Distinctive facial landmarks from the nose–tips, Limits mouth and two e…